12 Convex Quadrilaterals

Definition (quadrilateral)

Let $\{A, B, C, D\}$ be a set of four points in a metric geometry no three of which are collinear. If no two of $\operatorname{int}(\overline{A B}), \operatorname{int}(\overline{B C}), \operatorname{int}(\overline{C D})$ and $\operatorname{int}(\overline{D A})$ intersect, then

$$
\square A B C D=\overline{A B} \cup \overline{B C} \cup \overline{C D} \cup \overline{D A}
$$

is a quadrilateral.
Theorem Given a quadrilateral $\square A B C D$ in a metric geometry then $\square A B C D=\square B C D A=$ $=\square C D A B=\square D A B C=\square A D C B=\square D C B A=\square C B A D=\square B A D C$. If both $\square A B C D$ and $\square A B D C$ exist, they are not equal.

1. Prove the above theorem.

Definition (sides, vertices, angles, diagonals, opposite vertices, adjacent sides, opposite sides)

In the quadrilateral $\square A B C D$, the sides are $\overline{A B}, \overline{B C}, \overline{C D}$, and $\overline{D A}$; the vertices arc A, B, C, and D; the angles arc $\measuredangle A B C, \measuredangle B C D, \measuredangle C D A$, and $\measuredangle D A B$; and the diagonals are $\overline{A C}$ and $\overline{B D}$. The endpoints of a diagonal are called opposite vertices. If two sides contain a common vertex, the sides are adjacent; otherwise they are opposite. If two angles contain a common side, the angles arc adjacent; otherwise they arc opposite.

Theorem In a metric geometry, if $\square A B C D=\square P Q R S$ then $\{A, B, C, D\}=\{P, Q, R, S\}$. Furthermore, if $A=P$ then $C=R$ and either $B=Q$ or $B=S$ so that the sides, angles, and diagonals of $\square A B C D$ are the same as those of $\square P Q R S$.
2. Prove the above theorem.

Definition (convex quadrilateral)

A quadrilateral $\square A B C D$ in a Pasch geometry is a convex quadrilateral if each side lies entirely in a half plane determined by its opposite side.
3. Sketch two quadrilaterals in the Euclidean Plane, one of which is a convex quadrilateral and the other of which is not.
4. Sketch two quadrilaterals in the Poincaré Plane, one of which is a convex quadrilateral and the other of which is not.

Theorem In a Pasch geometry, a quadrilateral is a convex quadrilateral if and only if the vertex of each angle is contained in the interior of the opposite angle.
5. Prove the above theorem.

Theorem In a Pasch geometry, the diagonals of a convex quadrilateral intersect.
6. Prove the above theorem.

Theorem Let $\square A B C D$, be a quadrilateral in a Pasch gteometry. If $\overleftrightarrow{B C} \| \overleftrightarrow{A D}$ then $\square A B C D$ is a convex quadrilateral.
7. Prove the above theorem.
8. Prove that the quadrilateral $\square A B C D$ in a

Pasch geometry is a convex quadrilateral if and only if each side does not intersect the line determined by its opposite side.
9. Give a "proper" definition of the interior of a convex quadrilateral. Then prove that the interior of a convex quadrilateral is a convex set.
10. Prove that in a Pasch geometry if the diagonals of a quadrilateral intersect then the quadrilateral is a convex quadrilateral.

> "Prove" may mean "find a counterexample".
11. Prove that in a Pasch geometry at least one vertex of a quadrilateral is in the interior of the opposite angle.

Some things that we have, explained very briefly, with slightly different notation

We announce the setting for our axiom system by declaring our preliminary assumptions to be language, logic, set theory, and the real numbers.

The theory begins:
Undefined terms: $\mathscr{P}, \mathscr{L}, d, m$.

Axiom 1 Incidence Axiom

a \mathscr{P} and \mathscr{L} are sets; an element of \mathscr{L} is a subset of \mathscr{P}.
b If P and Q are distinct elements of \mathscr{P}, then there is a unique element of \mathscr{L} that contains both P and Q.
c There exist three elements of \mathscr{P} not all in any element of \mathscr{L}.

We are going to call the elements of \mathscr{P} points and the elements of \mathscr{L} lines. By (a) of the Incidence Axiom, we are taking the point of view that a line is a set of points. Thus, we automatically have an incidence relation for points and lines given by set membership. Because of (b), the Incidence Axiom might be called the Straightedge Axiom. We need (c) to get our plane off the ground, as without this there might be no points or lines at all or there might be just exactly one line.

Axiom 2 Ruler Postulate $d: \mathscr{P} \times \mathscr{P} \rightarrow \mathbf{R}, d:(P, Q) \rightarrow P Q$ is a mapping such that for each line l there exists a bijection $f: l \rightarrow \mathbf{R}, f: P \rightarrow f(P)$ where
$P Q=|f(Q)-f(P)|$
for all points P and Q on l.

DEFINITION 12.1 Pasch's Postulate or PASCH: If a line intersects a triangle not at a vertex, then the line intersects two sides of the triangle. Plane-Separation Postulate or PSP: For every line l there exist convex sets H_{1} and H_{2} whose union is the set of all points off l and such that if P and Q are two points with P in H_{1} and Q in H_{2} then $\overline{P Q}$ intersects l.

You should recognize that the following three statements are equivalent to PASCH: (1) If a line intersects the interior of a side of a triangle, then the line intersects another side of the triangle. (2) If a line intersects a triangle, then the line intersects two sides of the triangle. (3) If a line does not intersect either of two sides of a triangle, then the line does not intersect the third side of the triangle. Of course, a line may intersect all three sides of a triangle.
$1 \quad \mathscr{P} \backslash l=H_{1} \cup H_{2}$,
$2 \quad P \in H_{1}, Q \in H_{2}, P \neq Q \Rightarrow \overline{P Q} \cap l \neq \varnothing$.

DEFINITION 12.3 The sets H_{1} and H_{2} in Axiom 3 are halfplanes of line l, and l is an edge of each halfplane. A halfplane of $\overleftrightarrow{A B}$ is a halfplane of $\overrightarrow{A B}$ and a halfplane of $\overline{A B}$.

We are ready for the statement of our next axiom, which determines some properties of the undefined term m.

Axiom 4 Protractor Postulate m is a mapping from the set of all angles into $\{x \mid x \in \mathbf{R}, 0<x<\pi\}$ such that
a if $\overrightarrow{V A}$ is a ray on the edge of halfplane H, then for every r such that $0<r<\pi$ there is exactly one ray $\overrightarrow{V P}$ with P in H such that $m \angle A V P=r$;
b if B is a point in the interior of $\angle A V C$, then $m \angle A V B+$ $m \angle B V C=m \angle A V C$.

You should stop and examine the Protractor Postulate in detail. As well as deciding what the axiom says, you should think about what it does not say. How close does Axiom 4 come to incorporating all that you see when you look at a protractor?

DEFINITION 14.1 Mapping m is called the angle measure function. The measure of $\angle A V B$ is $m \angle A V B$. If an angle has measure $k \pi$, then the angle is said to be of 180 k degrees. $\angle A V B \simeq \angle C W D$ iff $m \angle A V B=m \angle C W D$, in which case we say that $\angle A V B$ is congruent to $\angle C W D$.

> Axiom 5 SAS Given $\triangle A B C$ and $\triangle D E F$, if $\overline{A B} \simeq \overline{D E}, \angle A \simeq \angle D$, and $\overline{A C} \simeq \overline{D F}$, then $\triangle B A C \cong \triangle E D F$.

Let's do it!

> Axiom 6 HPP If point P is off line l, then there exist two lines through P that are parallel to l.

Our axiom system, now called the Bolyai-Lobachevsky plane, is as consistent as the Euclidean plane or the real numbers (Section 23.2).

Axiom 6, the Hyperbolic Parallel Postulate, could be weakened to require only the existence of nonincident point P_{0} and line l_{0} such that there exist two lines through P_{0} that are parallel to l_{0}. This follows from Proposition Y of Theorem 23.7. On the other hand, Axiom 6 could be replaced by our next theorem.

Konveksui četverouglovi

Definicija (c̆etverougao)
Neka je $\{A, B, C, D\}$ skup od četri tacke u metričnoj geometriji, od $k_{0 j i}$ h ne partoje tri koge su kolinearne. Ako se n_{i}, edue Nuije od sljedecih unutrasujarti in $(\overline{A B})$, $\operatorname{int}(\overline{B C})$, int $(\overline{C D}) i \operatorname{int}(\overline{D A})$ ne siječe, tada

$$
\square A B C D=\overline{A B} \cup \overline{B C} \cup \overline{C D} \cup \overline{D A}
$$

nazivamo četverouyas.

(a)

(b)

(c)
(a)i (b) su cietverouyloni,
(c) nije ietuerocigas.

Teorema
Ako je dat četverouyao DABCD u metricuoj geometriji tada

$$
\begin{aligned}
\square A B C D & =\square B C D A=\square C D A B=\square D A B C \\
& =\square A D C B=\square D C B A=\square C B A D=\square B A D C
\end{aligned}
$$

Ako oba ōetverouyla $\triangle A B C D i \square A B D C$ postoje, oni nisu jeduaki.
(\#) Dokazati teoremu iznad
R_{j}
Pokuzino du je upr. $\square A B C D=\square C B A D$ (sličuo radimo za sue artale sluiajeve

$$
\left.\begin{array}{l}
\square A B C D=\overline{A B} \cup \overline{B C} \cup \overline{C D} \cup \overline{D A} \\
\square C B A D=\overline{C B} \cup \overline{B A} \cup \overline{A D} \cup \overline{D C}=\overline{A B} \cup \overline{B C} \cup \overline{C D} \cup \overline{D A}
\end{array}\right\} \Rightarrow
$$

Pokuzimo du su četverouylai IABCDi JABDC ruzlicily.

$$
\begin{aligned}
& \square A B C D=\overline{A B} \cup \overline{B C} \cup \overline{C D} \cup \overline{D A} \\
& \square A B D C=\overline{A B} \cup \overline{B D} \cup \overline{D C} \cup \overline{C A}
\end{aligned}
$$

Primpetino du u $B A B O C$ partoje duy $\bar{A} \overline{B D} ; \overline{C A}$ dok be du齐 u $\triangle A B C D$ ne portoje. Prena tome vezulteat slijedi.

Definicija
U cetrerouylu $\square A B C D$, stranice su $\overline{A B}, \overline{B C}, \overline{C D} ; \overline{D A}$; urhovi su $A, B, C i D ;$ uglovi su $\Varangle A B C, \Varangle B C D, \Varangle C D A$, i $\triangle D A B$ i dijayonale su $\overline{A C} i \quad \overline{B D}$. Krajuje taike dijayonale naziramo nasuprotui vrhovi. Ato drije strane sadräe zajeduicki vrh, strane su susjèdue; u suproduom su nasuprotue. A ko dua ugla sadrìe za, edniciku stranu, uylovi su susjedui; u suprotuom su nasuprotui.

Teorema
U metricing geometriji, ako e $\triangle A B C D=\square P Q R S$ tado $\{A, B, C, D\}=\{P, Q, R, S\}$. Starive, ako, e $A=P$ tada $C=R$ i ili je $B=Q$ ili $B=S$ tako da su stranice, uglovi i dijayonale cetrevouyla $\triangle A B C D$ is te kao kod $\triangle P Q R S$.
(\#) Dokazati teoremu iznad.
R_{j}
Prisjetimo se: Neku e A podskup metvicue geometrije. Tacka $B \in A$, e prolazna tacka skupa A ako postoje taike X, Y Eut take da $\bar{X}-B-Y$. Usuprotuom B je ekstremina tarka skupa A.

Enamo da su jedine ekstremne taike duài $\overline{A B}$ samo taike A i B. Isto tako zramo da u čet verouylu $\square A B C D$, u skupu $\{A, B C, D\}$ ne postoje tri tacke ko,e su kolinearne. ρ_{a} imamo

$$
\begin{aligned}
\{A, B, C, D\} & =\{Z \in \triangle A B C D \mid Z, \text { ekstienna tuika } D A B C D\} \\
& =\{B \in \overline{0}
\end{aligned}
$$

$$
\begin{aligned}
& =\left\{Z_{1} \in \overline{A B} \cup \overline{B C} \cup \overline{C D} \cup \overline{D A} \mid z_{1} \text { je elstremna taika } \overline{A B} \cup \overline{B C} \cup \overline{C D} \cup \overline{D A}\right\} \\
& =\left\{Z_{1} \in \overline{P Q} \cup \overline{Q R} \cup \overline{R S} \cup \overline{S N} \mid\right.
\end{aligned}
$$

$$
\begin{aligned}
& =\left\{Z_{1} \in \overline{P Q} \cup \overline{Q R} \cup \overline{R S} \cup \overline{S N} \mid Z_{j} \text { ektromne baiku } \overline{P Q} \cup \overline{Q R} \cup \overline{R S} \cup \overline{S p}\right\} \\
& =\left\{Z_{1} \in \square P Q R S \mid Z_{i} ; \quad\right. \text { ekstremun }
\end{aligned}
$$

$$
\begin{aligned}
& =\left\{Z_{1} \in \square P Q R S / Z \text { ie ekstremna taika } \square P Q R S\right\} \\
& =\{P, Q, R, S\}
\end{aligned}
$$

$$
=\{\rho, Q, R, s\}
$$

$D A R C D=\square P Q R S \quad \Rightarrow \overline{A B} \cup \overline{B C} \cup \overline{C D} \cup \overline{D A}=\overline{P Q} \cup \overline{Q R} \cup \overline{R S} \cup \overline{S D}$

$$
A=P \Rightarrow \| \overline{A B}=\overline{P Q} \text { il } \overline{A B}=\overline{P S} \Rightarrow i_{i} B=Q \text { il } B=S
$$

(a) $B=Q \Rightarrow \overrightarrow{A B}=\overline{P_{Q}} ; \overline{B C}=\overline{Q R} \Rightarrow C=R$
(4) $B=S \Rightarrow \overline{A B}=\overline{P S} ; \overline{S R}=\overline{B C} \Rightarrow C=R$

Definicija (tonveksan c̈etrerougao)
četierouyao $\triangle A B C D$ u Paテ̃ov; geometriji je konveksan. četrevouyao ako sraka strana plipada potpuno Kpoluravni odre tene; nasuprotrom stranicom.

Primier rekonveksuoy cetverouyla:

Teorema
UPas̃ovoj geometriji, ćetverougao je konveksan ako i samo ako je wrh suakog ugla sadiz̈an u unutravíjast; nasuprotuog ugla.
(\#) Dokazati teoremu iznad.
k_{j}
Prisjetino se: U Pajovo; geometniji, unutruinjart $\triangle A B C \quad$ (int(sARC)) e presjept strane prave $\overleftrightarrow{A B}$ koja sadraii C sa rtranom $\overleftrightarrow{B C}$ koja radrei A. Lsto tako prirjetims re rljedec'e terreme Teok. U Pasion; yeom., $P \in$ int ($\Varangle A B C$) akko su $A_{1} P$ sa iste strane prave $\overrightarrow{B C}$ i ako su C i P sa iste strane prave $\overrightarrow{B A}$.
"" Pretportanimo da je wrh suatog ugla sadrian u D unutrusinjarti nasuprotroy uglo. i pokazive de je cetverougao Σ_{a}^{c} konreksan.
$\triangle A B C D$
$\left.\begin{array}{rl}A \dot{\in} \operatorname{int}(X B C D) \Rightarrow & A \text { iB su sa iste strane prave } \overleftrightarrow{\Delta C}, \\ & A \text { iD su sa iste strane prave } \overleftrightarrow{\overleftrightarrow{B C}}\end{array}\right\} \Rightarrow$
$\overline{A B}$ potpuno pripadu polunami odredere; stranicom $C D ;$
$\overline{A D}$ potpuno pripude polurami odredenoj stranicom $B C$.
Slicus zue $\overline{C D}$ i $\overline{C_{B}} \Rightarrow D A R C D$ je konetsan.
$\because " Z A$ VJEZZBU
(upotrebi definicijni teolemn iznad)

Teorema
U Pas̃ovoj geometriji, dijayonale konveksnog ìetrevougla se sjeku.
(\#) Dokuzati teonemu iznad.
R_{j}.

Skica dokuza.
$\triangle A B C D$ konv. cex.
Trebano poh. $\overline{A C} \cap \overline{B D} \neq \varnothing$
Prajitino se
Teor
DASCO je tonvels. \& wh siakog uyla re nulasic a unatruists. nesuprofoog uyla

Trebamo pokarafi $E \in \overline{B S}$

Crasstar Theor.

$$
\stackrel{\text { rearstar theor. }}{\Rightarrow} \quad \overrightarrow{A C} \cap \overline{D B}=\{F\}, F j \text { diustu. }, \quad B-F-D
$$

$$
\{E\}=\overrightarrow{A C} \cap \overrightarrow{B D}=\overrightarrow{A C} \cap \overrightarrow{B D}=\overrightarrow{A C} \cap \overline{B D}=\{F\} \quad \stackrel{\overleftrightarrow{A C}}{\Rightarrow} \neq \overrightarrow{B D} \quad \underset{F}{\Rightarrow} \quad F \overrightarrow{A C} \cap \overline{B D}=\{E\}
$$

Teorema
Neka je $\triangle A B C D$ c̀etrerougao u Pason; geometuiji. Ako, e $\overleftrightarrow{B C} \| \overleftrightarrow{A D}$ tade je $D A B C D$ konveksan četverouyao.
(\#) Dokazii teonemn izuad.
R_{j}.
Dokaz poyledaj u kujizi, Teorem 4.5.5.
(\#) Skicirati dua èetverougla u Poincareovg ravni od kojih, e jedan konveksan, dok druyi nije.
R_{j}

konveksan èetrevouyao a Poincare-ouj ravui (svakaistranica pripuch polulam, odrectena suprotrom rtranicom)

Primpetino de $\overline{C D}$ ne pripadu potpuno a poluravn,. odredewoj pravom $\overleftrightarrow{A B}$.
Oro je primper nekoneksnog àetuerouyla

